If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7x-76=0
a = 1; b = 7; c = -76;
Δ = b2-4ac
Δ = 72-4·1·(-76)
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{353}}{2*1}=\frac{-7-\sqrt{353}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{353}}{2*1}=\frac{-7+\sqrt{353}}{2} $
| y−-3=8 | | (x+4/3)+(x+2/4)=3 | | 3h+20=-7h | | 1/3x=50 | | 6−b=10 | | 3=9/p | | 8-4x=-5x-x | | 3h+20=7h | | x/4-10=-15 | | 4554x-280646=(99x-61) | | 1/5+(3/4)x=8/9-(6/7)x | | 3(j=+2)=3j+2 | | -5(c-2)=7(c-6) | | Y²+10y+21=0 | | -3=-3k | | 4(2.5x-2)=2(5x-5+2) | | (x6+3)*7=-21 | | 6c-8-2(=-16) | | 17(x+3)=15 | | 100=2b | | (x+4/3)+(x+6/5)=3 | | 3x+x+10=8x-4x+10 | | 11u=10+9u | | 3(3x+2)=12x+3-3x+3 | | 4x-(5x+9)=7x-17 | | -3x=3+x | | 10.08=0.2x+10 | | 3/5x-17=34 | | 6÷n=2 | | -2x2= | | x^2+2x+71=0 | | -1+2(x-4)=3 |